Finite di erence approximations for fractional advection–dispersion ow equations

نویسندگان

  • Mark M. Meerschaert
  • Charles Tadjeran
چکیده

Fractional advection–dispersion equations are used in groundwater hydrology to model the transport of passive tracers carried by uid ow in a porous medium. In this paper we develop practical numerical methods to solve one dimensional fractional advection–dispersion equations with variable coe1cients on a 2nite domain. The practical application of these results is illustrated by modeling a radial ow problem. Use of the fractional derivative allows the model equations to capture the early arrival of tracer observed at a 2eld site. c © 2004 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The new implicit finite difference method for the solution of time fractional advection-dispersion equation

In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...

متن کامل

From Single Phase to Compositional Flow Applicability of Mixed Finite Elements

In this paper we discuss the formulation of the governing equations that describe ow of uids in porous media Various types of uid ow ranging from single phase ow to compositional ow are considered It is shown that all the di erential equations governing these types of ow can be e ectively rewritten in a fractional ow formulation i e in terms of a global pressure and saturation or saturations an...

متن کامل

A numerical scheme for space-time fractional advection-dispersion equation

In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...

متن کامل

Variational solution of fractional advection dispersion equations on bounded domains in IR

In this paper, we discuss the steady state Fractional Advection Dispersion Equation (FADE) on bounded domains in IRd . Fractional differential and integral operators are defined and analyzed. Appropriate fractional derivative spaces are defined, and shown to be equivalent to the fractional dimensional Sobolev spaces. A theoretical framework for the variational solution of the steady state FADE ...

متن کامل

Finite difference approximations for a fractional advection diffusion problem

Abstract: The use of the conventional advection diffusion equation in many physical situations has been questioned by many investigators in recent years and alternative diffusion models have been proposed. Fractional space derivatives are used to model anomalous diffusion or dispersion, where a particle plume spreads at a rate inconsistent with the classical Brownian motion model. When a fracti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004